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Executive Summary 
Strategic decisions concerning the timing and location of forest operations require accurate information 
about the state and rate of change of forest growing stock. Regional forest management would benefit 
from spatially explicit inventory data across the entire forest area. Due to cost considerations in detailed 
field inventories, remotely sensed data have often been employed to extend forest inventories through 
both space and time.  The purpose of this study was to generate spatially explicit predictions of growing 
stock inventory, growth, mortality and removals of above ground biomass across the entire state of 
Michigan, U.S.A. This is achieved by coupling spectral information from Landsat TM images and other 
geospatial layers with the inventory data from Forest Inventory and Analysis (FIA) program of U.S. 
Forest Service in a kNN imputation procedure. The predictor layers in the imputation process included 
normalized difference vegetation index (NDVI), land cover classes, basal area weighted height 
(BAWHT), and digital elevation model (DEM) while volume, growth, mortality and removal data from 
6,702 sample plots of FIA were utilized for both model calibration and validation. A Random Forest 
imputation algorithm was implemented to develop spatially explicit forest inventory information across 
the Entire State of Michigan via the integration of geospatial data with forest inventory plot 
measurements. Generally, state wide spatial inventory was unbiased but demonstrated relatively low 
precision. Inclusion of BAWHT as an explanatory variable was found to significantly improve the 
prediction accuracy. Three levels of comparison were made to evaluate the accuracy of the inventory 
estimates: at the plot, stand and county levels. The validation procedure confirmed that county level 
estimates were better than stand level which in turn was better than plot level estimates. The statistical 
modeling approach employed (imputation) achieved acceptable accuracies when compared to other 
studies.  
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Introduction 
Forest inventory and monitoring are crucial to develop sound forest management plans, which in turn help 
in achieving desired ecological, economic, and social objectives. The strategic decisions concerning the 
timing and location of forest operations are typically dependent on assessment and mapping of forest 
variables. Two types of forest inventories can be distinguished based on the extent of survey: strategic 
inventories focus on large area estimates for a large number of attributes while management inventories 
focus on small area estimates to guide operational forest management (McRoberts et.al., 2007). The 
number of variables measured during forest inventory is usually high, and new variables are further 
derived through computations (Tomppo et.al., 2002). Regional forest planning requires spatially explicit 
inventory of forest attributes across the entire area of interest. Since exhaustive field measurements at the 
landscape or regional level are prohibitively expensive, remotely sensed data are often coupled with 
limited forest inventory data to extend the measurements through both space and time. 

Imputation Methods 
K nearest neighbor (kNN) imputation can be used to develop spatially explicit inventories by coupling 
sparse sample plot data with continuous scale remote sensing data partitioned into pixel units. The kNN 
imputation is often applied to (i) supply missing data to complete a data set for subsequent analyses or (ii) 
to estimate sub-population totals (Reese et.al., 2002; Stage and Crookston, 2007).  The idea that 
motivates kNN imputation methods is that two records with similar X-values (predictor variables) should 
have similar Y-values (dependent variables) (Eskelson et.al., 2009). The kNN imputation is an approach 
commonly used to extrapolate forest inventory data collected at discrete sampling locations to 
progressively larger spatial extents.  The value imputed to a location can be a value measured at another 
sample plot location, or an average value computed from multiple sample plot locations (Eskelson et.al., 
2009). In a forestry context, the kNN imputation exploits the association between auxiliary variables that 
are inexpensive to measure over the entire area of interest (such as remote sensing and geospatial data), 
and forest attributes (which are expensive to measure) of interest measured at discrete sampling locations 
within the area of interest (Crookston and Finley, 2008). The process involves integrating forest plot 
inventory data with spatially explicit geo-information on land cover, topography, climate, among others, 
which are often derived from remote sensing data. 

The kNN imputation is a two phase sampling procedure in which the first phase involves identifying and 
obtaining spatially explicit auxiliary layers (geospatial predictors) and the second phase involves a 
detailed sample plot inventory for the required forest parameters (Falkowski et.al., 2010; Falkowski, 
2008; Moeur and Stage, 1995). In the procedure, a reference dataset is first produced to generate a model 
which is then generalized over a continuous target dataset to predict attributes of interest in un-
inventoried areas (Hudak et.al., 2008). The reference set consists of field measured sample plot data and 
corresponding pixel values from geo-referenced raster layers while target set is comprised of only the 
predictor variables for the total area of interest in the form of pixel values (Bernier et.al., 2010; Hudak 
et.al., 2008). The kNN imputation algorithm associates one or more of the sample plot data in the 
reference set to unsampled areas based on the spectral similarity between sampled and unsampled areas. 
The spectral similarity between a target and reference pixels can be determined by calculating spectral 
space distance based on covariate (auxiliary variables) characteristics available from geospatial layers for 
both target and reference sets (Falkowski, et.al., 2010; LeMay and Temesgen, 2005; McRoberts et.al., 
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2007). The spectral distance (i.e. nearness of a target and reference pixels) can be measured through 
several algorithms such as Euclidian distance, Mahalanobis distance, and random forest proximity and 
target locations can then be imputed with response variables from the nearest neighbors in the reference 
dataset. 

Imputation mapping is a promising technique, with potential for generating spatially explicit, border-to-
border information on forest composition (Grossmann, et.al., 2009). The kNN method is non-parametric 
(i.e. there is no assumption of distributional characteristics of the variables) and can estimate multiple 
forest variables simultaneously and is a simple but powerful tool to extend a wide range of field data to 
landscapes (Haapanen et.al., 2002; LeMay and Temesgen, 2005; Katila and Tomppo, 2002). The method 
can also preserve the covariance structure of forest variables and thus produce maps that appear very 
realistic in terms of their spatial pattern (Haapanen et.al., 2002; Holmstrom, 2003; LeMay and Temesgen, 
2005; Moeur and Stage, 1995). Nearest neighbors techniques have been shown to be useful for predicting 
multiple forest attributes from forest inventory and remote sensing data such as Landsat imagery 
(McRoberts, 2009). 

Imputation mapping is impacted by a wide array of factors including the selection of explanatory 
variables. Examples of such factors include raster images from satellite sensors as explanatory layers, 
type of distance metric (for finding nearest neighbors), and the number of nearest neighbors (i.e. value of 
k) from a reference set to be considered in the imputation (Kalila and Tomppo, 2001). The type of 
distance metric and the number of neighbors (k) used in imputation mapping vary among applications 
(LeMay and Temesgen, 2005). When a single nearest neighbor is considered for imputing target 
locations, then simply the response variables of the nearest neighbor is assigned to the target points 
(Crookston and Finley, 2008; Falkowski, 2010; Hudak et.al., 2008), and in such a case the natural 
variation of the forest variables is retained in the prediction but accuracy of prediction reduces (Katila and 
Tomppo, 2001; Makela and Pekkarinen, 2004). When more than one nearest neighbors are used to impute 
missing parameters at target locations, the prediction accuracy improves but more bias is introduced 
(McRoberts et.al., 2002). The bias introduced with increasing values of k can be reduced to some extent 
by undertaking weighted average of the k neighbors (Kalila and Tomppo, 2001).  

The pixel-wise estimates of any forest parameter can be made as the weighted average of the parameter 
(v) measured in k nearest sample plots (j).  For any target pixel (p) in a feature space, the value of a 
parameter (v) can be expressed as in the equation 1. The weights assigned to each of the k samples are 
generally proportional to the inverse squared Euclidean distance (d) between the pixel to be estimated (p) 
and the reference plot-pixel, j (see equation 2) (Haapanen, et.al., 2002; Nilsson, 2002; Reese et.al., 2002; 
Tomppo et.al., 2002). The estimate of variable (v) for pixel p is  
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such that  pkpp ddd ,,2,1 .......!!! and 

pjd , = feature space distance from pixel p to plot j and  

pjv , = variables for the plot with distance pjd ,  

 
Haapanen and Ek (2001) have described the kNN algorithm in a straightforward way as: 

1. For each target pixel calculate the Euclidean distance to all reference pixels  
2. Rank the k nearest plots based on the Euclidean distance 
3. Calculate weighted average of the desired forest parameters of the k nearest plots  
4. Proceed to the next target pixel. 

 
The kNN imputation simultaneously gives estimates for more than one response variables (Bernier, et.al., 
2010); in fact, the plot identifiers (IDs) of reference set are imputed to the missing locations based on the 
similarity of explanatory variables and the values of the response variables corresponding to the IDs are 
assigned to that location (Falkowski, 2010). The imputation with a single nearest neighbor produces 
output with similar variance structure to that of the sample plots measurements. Imputation error is 
evidently greater than ordinary least square regression because values assigned to each target unit using 
single neighbor imputation are the original values from reference plot data (Hudak et.al., 2008). The root 
mean square difference (RMSE) calculated from the difference between imputed and observed values 
provide a measure of model error. 

The plot level accuracy of imputation estimates are found to increase somewhat with higher values of k 
but also leads to over-prediction of forest growing stock (and hence bias) in areas having low stock and 
vice versa (Grossmann et.al., 2009). Depending on the purpose of imputation, a lower value of k is set to 
retain the variation of field variables in the estimation and mapping while a higher value of k selected to 
minimize pixel level RMSE (Kalila and Tomppo, 2001; McRoberts et.al., 2002). The errors of omission 
are found to decrease with increasing levels of k, but errors of commission increase for forest type 
predictions (Grossmann et.al., 2009; Haapanen et.al., 2002). Also by increasing the number of sample 
plots in the reference set, the prediction accuracy can be expected to improve as better matches, in terms 
of predictor variables (X-values), would be found for the un-sampled areas (LeMay and Temesgen, 
2005). Thus, to obtain a reliable estimate with the kNN method, it is important to have a practically large 
sample of field inventory plots representing all forest conditions available in the area of interest 
(Haapanen et.al., 2002; Tomppo, 2006).  The sample plots in the reference set are assumed to characterize 
the entire range of variability in the predictor variables i.e. the field plots and the corresponding geospatial 
data should characterize the entire area of study (Hudak et.al., 2008). Choice of X and Y variables, 
distance measure and k all contribute to error, but no single choice gives best result for all applications, 
nor for all response variables within a given application, and models must be developed on a case-by-case 
basis (Eskelson et.al. 2009; Ohmann et.al., 2011). 

There are several popular variants of kNN and most of these methods define nearness in terms of 
weighted Euclidean distance. Previous researches suggest that Random Forest (RF) NN outperforms other 
NN methods for mapping forest attributes (Ohmann et.al. 2011). The RF algorithm offers a novel nearest 
neighbor distance metric for imputation problems and can handle both categorical and continuous data 
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simultaneously (Breiman, 2001). The algorithm is based on classification and regression tree (CART) 
technique that has achieved excellent results in classifying remotely sensed data (Falkowski et.al. 2009).  

RF is a type of ‘ensemble learning’ that generates many trees and aggregates their results. The two well-
known methods of ensemble learning are boosting and bagging.  In boosting, successive trees give extra 
weights to elements incorrectly predicted by earlier trees and final prediction is based on weighted voting 
of each. In bagging, each tree is independently constructed using a bootstrap sample of the data set and 
final prediction is based on a simple majority vote of prediction (Liaw and Wiener, 2002). The RF 
algorithm begins with the selection of many bootstrap samples and a classification tree is fitted to each of 
the bootstrap samples (see Figure 1) such that each node of a tree is split using the best among a subset of 
predictor variables selected randomly at that node for the binary partitioning (Breiman and Cutler, 2004; 
Cutler et.al., 2007; Liaw and Wiener, 2002). RF can be thought of as a special case of bagging: in the 
case of bagging, best split at a node is chosen from among all predictors but in case of RF the best split is 
chosen from a random sample (subset) of predictors (Liaw and Wiener, 2002). Hence, every tree is 
different owing to two factors: first, at each node, a best split is chosen from a random subset of the 
predictors rather than all of them; second, every tree is build using a bootstrap sample. At each step in 
fitting a classification tree, an optimization is carried out to select a node, a predictor variable, and a cut-
off value (for numerical variables) that result in the most homogeneous subgroups for the data, as 
measured by the Gini index (Falkowski et.al., 2009). The splitting process continues until further 
subdivision no longer reduces the Gini index. Every time a split of a node is made on variable m the Gini 
impurity criterion for the two descendent nodes is less than the parent node. After the trees are fully-
grown, each is used to predict the OoB observations (about one-third of the cases are left out of the 
bootstrap sample). The predicted class of an observation is calculated by majority vote of the OoB 
predictions for that observation (Cutler et.al., 2007). The error rates are computed for each observation 
using the OoB predictions and then averaged over all observations. Thus out-of-bag (OoB) observations 
are used to estimate the prediction accuracy and variable importance for an element, and there is no need 
for cross-validation or a separate test set to get an unbiased estimate of error (Breiman and Cutler, 2004; 
Cutler et.al., 2007; Falkowski et.al., 2009; Liaw and Wiener, 2002; Pang et.al., 2006). The RF algorithm 
is strictly non-parametric, flexible and robust with respect to non-linear and noisy relations among input 
features and class labels (Breiman, 2001; Cutler et.al., 2007; Falkowski et.al., 2009). 
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Figure 1. A simple schematic of random forest algorithm (adapted from Yang et.al. 2008) 
 
In RF, nearness is defined by one minus the proportion of trees where target observation is in the same 
terminal node as a reference observation (Breiman, 2001; Crookston and Finley, 2008; Liaw and Wiener, 
2002). The intuition is that similar observations should be in the same terminal nodes more often than 
dissimilar ones (Liaw and Wiener, 2002). 
 
The RF described by Breiman (2001) has following characteristics: 

• Its accuracy is as good as Adaboost and sometimes better  
• It’s relatively robust to outliers and noise 
• It’s faster than bagging and boosting 
• It gives useful internal estimates of error, strength, correlation and variable importance 
• It’s simple and easily parallelized. 

Data Sources 

Forest Inventory and Analysis Program 

The Forest Inventory and Analysis (FIA) program of the US Forest Service has a nationwide periodic 
inventory system for national, regional, and state-level assessment of forest resources to describe status 
and change in forest resources (McRoberts, 2000). The FIA program has collected and compiled data for 
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several attributes under the permanent plot design, established especially after 1999 when FIA program 
shifted from a periodic inventory to an annual inventory system (Woudenberg et.al. 2010). FIA 
permanent ground plots are designed to cover 1-acre sample area (however, not all trees on the acre are 
measured) such that each plot is representative of 6,000 acre hexagonal area on ground and consists of a 
national standard fixed radius four sub-plots as shown in Figure 2 (Woudenberg et.al. 2010; Burkman, 
2005). The annual inventory scheme of FIA program covers upto 20 percent of the total plots (called 
panel) in a state each year (hence, generally all plots in a state are visited once in five years and have five 
panels). The sampling intensity of this program is obviously designed for large area estimation such as 
entire states or regions. 

 

            

Figure 2. Distribution of one FIA sample plot per hexagon of 6,000 acre on ground (left) and standard 
plot design for the measurement of different forest components 

Remote Sensing Products 

The development of remote sensing sensor systems, both satellite-borne and airborne, and GPS devices 
are facilitating the enhanced use of remotely sensed data in forest inventories. Landsat Thematic Mapper 
(TM) has archived the longest data record since 1972 and has a long history of widespread use and 
acceptance (Powell et.al., 2010). These data products are available for free at the global archive of U.S. 
Geological Survey online server (http://glovis.usgs.gov/) in a standard processing format at a spatial 
resolution compatible to the size of FIA field inventory plots (see Figure 3).  
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Figure 3. The FIA ground plot geometry versus 30 m TM pixels. The dark grey circles represent the area 
of locational error due to GPS errors. The larger grey circles represent the potential locational error due to 
image registration (Hoppus et.al. 2000).  

 

Objectives  
In this study we mapped regional scale growing stock woody volume and net-growth by coupling four 
geospatial layers (auxiliary variables), namely normalized difference vegetation index (NDVI) derived 
from Landsat TM imageries, Digital Elevation Model (DEM), land-cover types (IFMAP) and Basal Area 
Weighted Height (BAWHT), with forest inventory data of US Forest Service’s Forest Inventory and 
Analysis (FIA) program.  We applied the RF method of k-NN imputation to predict forest inventory 
information of interest across the entire State of Michigan. The RF technique was chosen because it has 
shown better performance in the prediction of forest inventory parameters as compared to other methods 
(Breidenbach et.al., 2010; Hudak et.al. 2008). The technique is intended to create detailed maps of 
volume and net-growth with useful precision and a high degree of automation. 

The purpose of this study was to generate spatially explicit predictions of growing stock volume, and 
growth across 47 counties in the northern parts of Michigan, USA.  The specific research questions were:  

1. How can geospatial and FIA data be efficiently integrated to predict the distribution of the desired 
forest inventory parameters at a regional scale in a spatially explicit manner? 

2. How does the accuracy of forest attribute estimates from imputation technique vary from plot to 
stand to county level? 

3. How reliable are the geospatial data for estimation of the inventory parameters of interest? 

 

  



Page 8 

Methods 

Study Area 
The northern Lower Peninsula and entire Upper Peninsula of Michigan, comprising 47 counties, was the 
area of interest for this research (see Figure 4). The study area was delineated so as to avoid the counties 
with sparse forest distribution in terms of canopy density, particularly from the southern Michigan. The 
growing stock volume, growth, mortality and removal data (in standard format) from the extensive FIA 
data base were the basic response variables considered in the analysis for estimation and mapping purpose 
in this study. The FIA database has inventory records available at both plot and county level.  

       

Figure 4. Study area in Michigan, U.S.A. 

The geospatial predictor layers considered in the study were Landsat TM derived NDVI, Land Cover data 
from 2001, digital elevation model (DEM), and basal area weighted canopy height (BAWHT). All these 
data layers are publicly available and have the same spatial resolution of 30 m. An independent inventory 
dataset across Michigan Tech’s forestland holdings (1,840 ha at Ford Forestry Centre) was also utilized in 
this study to compare the results of estimates at the plot and stand-level via field inventory and imputation 
techniques.  
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Geospatial Data Preparation 

NDVI raster 

The following Landsat 5 Thematic Mapper (TM) images as in Table 1 were downloaded from the Global 
Visualization Viewer (http://glovis.usgs.gov/) operated by the Earth Resource Observation and Science 
Centre (EROS) of the USGS. The images are already processed at the source to Level 1T (L1T) that 
provides systematic radiometric and geometric accuracy by incorporating ground control points and also 
employing a Digital Elevation Model (DEM) for topographic accuracy 
(http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html#terrain_l5_l1t).  

 
Table 1: Landsat imageries used in the study for the derivation of NDVI raster  
SN WRS-2  

Path/ Row 
Lat/ Long Acquisition 

Date 
Scan Time UTM 

Zone 
Sun 
elevation 

Earth-Sun 
Distance* (d) 

1. 20/ 29 44.6/ -82.7 2007-06-11 16:09:52 17 62.86 1.01536 
2. 20/ 30 43.2/ -83.2 2008-05-28 16:04:19 17 61.93 1.01355 
3. 20/ 31 41.8/ -83.7 2008-07-15 16:03:22 17 61.07 1.01646 
4. 21/ 28 46.0/ -83.8 2008-07-06 16:08:37 17 60.11 1.01670 
5. 21/ 29 44.6/ -84.3 2008-07-06 16:09:01 16 60.86 1.01670 
6. 21/ 30 43.2/ -84.8 2006-06-15 16:15:11 16 63.57 1.01577 
7. 21/ 31 41.8/ -85.3 2007-07-20 16:16:21 16 61.46 1.01616 
8. 22/ 28 46.0/ -85.3 2007-06-25 16:21:35 16 61.91 1.01652 
9. 22/ 29 44.6/ -85.8 2007-06-09 16:22:16 16 62.78 1.01513 
10. 22/ 30 43.2/ -86.3 2007-06-09 16:22:40 16 63.59 1.01513 
11. 22/ 31 41.8/ -86.8 2008-07-13 16:15:47 16 61.35 1.01655 
12. 23/ 28 46.0/ -86.9 2006-07-15 16:27:24 16 59.79 1.01646 
13. 23/ 29 44.6/ -87.4 2007-08-03 16:27:47 16 57.21 1.01471 
14. 23/ 30 43.2/ -87.9 2007-08-03 16:28:11 16 58.08 1.01471 
15. 24/ 27 47.4/ -87.9 2009-08-31 16:29:14 16 47.23 1.00946 
16. 24/ 28 46.0/ -88.4 2007-06-23 16:33:59 16 62.00 1.01642 
17. 24/ 29 44.6/ -88.9 2010-07-17 16:30:58 16 59.95 1.01635 
18. 24/ 30 43.2/ -89.4 2010-07-01 16:31:25 16 62.61 1.01667 
19. 25/ 27 47.4/ -89.4 2009-06-03 16:33:57 16 60.05 1.01433 
20. 25/ 28 46.0/ -89.9 2009-06-03 16:34:21 16 60.92 1.01433 
21. 25/ 29 44.6/ -90.5 2007-08-17 16:39:59 15 53.81 1.01244 
22. 26/ 28 46.0/ -91.5 2007-07-07 16:46:10 15 60.93 1.01669 
(* earth-sun distance in astronomical units for Day of the Year). 
 
The images used were captured in between the years 2006 and 2010, ranging from June to August, in the 
peak of growing season of tree species; only the images from June-Aug were considered to reduce the 
impact of seasonal and phenological variation. The best quality images with zero percent cloud cover 
were selected for each scene and area of interest (AOI) were determined for each based on visual 
inspection of false color composite (FCC) in Erdas Imagine 2010 software. The procedure and parameters 
suggested by Chander et.al. (2009) were applied for the conversion of calibrated digital numbers (DNs) to 
absolute units of at-sensor spectral radiance and top-of-atmosphere (TOA) reflectance. The models for 
this conversion were built in Erdas Imagine’s Modeler. Thus reflectance images were generated and the 
red and near infrared bands (namely band 3 and 4) were used for the computation of Normalized 



Page 10 

Difference Vegetation Index (NDVI) for each of the scenes using model builder in Erdas Imagine 2010. 
The individual NDVI images were then mosaicked using MosaicPro tool in Erdas Imagine 2010. The 
overlap function was set to ‘feather’ and color correction across the NDVI images was made using 
illumination equalization and image dodging across images (ERDAS Desktop 2010, online help).  

Land Cover Raster 

The land cover 2001 raster, product of Integrated Forest Monitoring Assessment and Prescription 
(IFMAP) Project, was downloaded from MI Geographic Data Library 
<http://www.mcgi.state.mi.us/mgdl/?action=thm>. The land cover was derived by the IFMAP project via 
the classification of Landsat TM imageries collected between 1997-2001 over three seasons, spring (leaf-
off), summer, and fall (senescence), to produce a dataset that can serve multiple functions. The land-cover 
rasters were available separately for the upper and lower peninsula of Michigan. The original raster had 
32 classes; however, it was further reclassified into four broad categories (broadleaved forests, conifer 
forests, mixed forests and non-forest) for the purpose of this study. 

DEM Raster 

The digital elevation model (DEM) at 30 m spatial resolution (1 arc second) was downloaded for the 
study area from the National Map Seamless Server (URL: 
http://seamless.usgs.gov/website/seamless/viewer.htm) of USGS, Seamless Data Warehouse. The DEM 
rasters (in .tiff format) were downloaded in tiles and then mosaicked in the Erdas Imagine using NN 
resampling and overlay function.  

BAWHT Raster 

The basal area weighted height (BAWHT) in a raster format is developed by the Wood Hole Research 
Centre as a part of the National Biomass and Carbon Dataset (NBCD) 2000. The BAWHT raster (as .tif 
file) is freely available for download from http://atlas.whrc.org/NBCD2000. The raster is produced based 
on a mapping zone approach in which the conterminous U.S. is split into 66 eco-regionally distinct 
mapping zones and our study area is labeled as the zone 51. Digital numbers (DN) of the raster represent 
the average basal area weighted height in meters multiplied by 10. Thus, the average basal area weighted 
height in meters is DN/10. Development of the dataset is based on an empirical modeling approach that 
combined FIA sample plot data with high-resolution InSAR data acquired from the 2000 Shuttle Radar 
Topography Mission (SRTM) and optical remote sensing data acquired from the Landsat ETM+ sensor 
(Walker et.al., 2007). The BAWHT for an FIA plot is calculated according to:  

)(1
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Where BAi is the basal area (m2) of the ith tree in the plot and is calculated according to: 

200007854.0 DBHBA !=  
 
(DBH is the diameter at breast height (cm) and ACTUALHTi  is actual height of ith tree) and BAPlot is the 
total basal area (m2) for the plot and is calculated according to: 
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The plot level BAWHT of the FIA database is integrated with the predictor rasters using regression tree 
modeling approach to derive spatially explicit basal area weighted height raster (Walker et.al., 2007). 

All the four predictor rasters and GIS layers used in the study were projected to Michigan GeoRef spatial 
reference (NAD_1983_Michigan_GeoRef_Meters; UTM_Zone_16N). 

Mapping Model Development 

Joining Geospatial Predictors to Field Inventory Data 

The imputation procedure was implemented with a large number of FIA field sample plots in the 
reference set. The reason for including a large number of sample plots in the imputation process was to 
find a better match of nearest neighbors for the un-sampled areas based on the similarity of X values of 
the selected reference and the target pixels as suggested by LeMay and Temesgen (2005) and also with 
the hope that bigger sample size would better represent available forest conditions in the area of interest. 
Altogether 6,702 FIA inventory plots data (throughout the Michigan) were obtained for the reference set 
that included response variables such as growing stock volume, growth, mortality and removals on per 
acre basis (also by species group code). 

In order to increase the sample size a compromise was needed in order to pass FIS security clearances. 
This was achieved by regrouping the NDVI and Land Cover rasters into broad classes instead of using in 
a continuous format. Because of the privacy and security restrictions of FIA, it was not possible to obtain 
field coordinates of the FIA plots. However, the generosity of FIA unit at the Northern Research Station 
made our life easy by attaching the pixel values of each predictor raster layers to the FIA field plots. But 
this task of linking the FIA field plot attributes to the raster values was possible only after retaining a 
limited number of unique values for the combinations of the raster layers and that needed grouping 
(classification) of the NDVI and Land Cover rasters. Since users of FIA data are could track an individual 
FIA plot on the ground (which is against the privacy requirements specified in the amendments to the 
U.S. Food Security Act of 1985) if each of the plots have a unique combination of raster values, we had to 
group the NDVI and land cover rasters into broader classes. 

The continuous NDVI raster was classified into 20 classes (using natural breaks in Arc Map 9.3) and the 
land-cover raster was reclassified into four broader classes namely broadleaved, conifers, mixed and non-
forests. The predictor raster layers were then sent to the FIA unit at the Northern Research Station where 
the plot coordinates were intersected with the spatially referenced predictor rasters and the corresponding 
raster values were associated with each of the sample plots. In fact, we sent only the classified NDVI and 
land-cover rasters to the FIA unit in an anticipation to obtain as many sample plots data as possible after 
passing the security restrictions of FIA; the ground elevation and BAWHT data assigned to the plots were 
the direct values as measured by FIA. That means the elevation and BAWHT used in the training 
(reference) set for model building were from FIA while the values of target points for spatially extending 
the model for the study area were from the rasters. We simply assumed that the plot elevation and 
BAWHT values provided by FIA were the same as the corresponding values in the spatially referenced 
raster layers. We do acknowledge that since plot level elevation and BAWHT from FIA data may not 
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exactly match with the corresponding values in the geo-referenced rasters, there is likely bias associated 
at this stage. A simple flow diagram of the methods employed in the study is described in the Figure 5 
below. 
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Figure 5: Flow diagram of the methods of study 
 

Model Training and Prediction 

The sample plots in the reference set are assumed to characterize the entire range of variability in the 
predictor layers, though the used predictor layers itself were not sufficient to fully describe the 
heterogeneous forest conditions of this regional study. Since imputation with a single nearest neighbor 
produces output with similar variance structure to that of the observations, the value of k (number of 
nearest neighbors) was set equal to one to maintain the variance structure of forest attributes in the 
imputation process.  

To scale the plot level FIA data to maps, we developed RF imputation models relating field-measured 
response variables to plot level raster value as the predictor variables. As already mentioned NDVI, DEM, 
land-cover and BAWHT were the predictor variables, however the latter was not included while 
producing forest attributes distribution map because BAWHT data was available only for limited number 
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of plots. The yaImpute package in R statistical software (www.r-project.org) was used to implement the 
random forest algorithm (Crookston and Finley, 2008) to impute growing stock volume, growth, 
mortality and removal for whole of the study area. The yaImpute works with .csv file format of the 
reference data matrix and determines nearest neighbors for each of the target points based on spectral 
space distance using auxiliary variables of the reference and target points. The feature space distance 
considered in this study was based on random forest method. The random forest mode was set to 
regression, number of trees was fixed at 2000 and k = 1. After determining the best random forest model 
based on least statistical errors, the model was extended spatially using the Ascii Grids of the predictor 
layers for target area. Since the AsciiGridImpute function takes long time to generate spatial prediction, 
the imputation process was carried out by splitting the predictor rasters into a dozen tiles and running the 
imputation model separately for each tile. In this step, each of the target pixels are assigned an identifier 
from the reference data set and the response variable for the target pixel will be the same as of the 
assigned identifier.  

Model Validation 

For validation purpose of the imputation results, a set of data for growing stock volume, growth, mortality 
and removal was retrieved from the FIA database (FIADB) using EVALIDator program where these data 
are available for forestland at county-level. This reference set was used for validation of the imputation 
results for each of the 47 counties. In order to compare the estimates of the forest attributes (particularly 
volume) at plot and stand level, the growing stock volume data from the Capstone Forestry Project of 
Michigan Tech was utilized. The Capstone dataset has inventory records, only for the growing stock 
volume, for 358 permanent plots and 50 stands.  

We have used the RMSE and biases (calculated from the difference between imputed and observed 
values) as a measure of predictive performance of yaImpute i.e. prediction accuracy of the RF imputation, 
in this study.  
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Results 
Three RF models were developed with the common predictors NDVI, DEM and land-cover. The root-
mean square errors (RMSE) with and without BAWHT as an additional predictor in the three models, are 
given in the Tables 2, 3 and 4. The first model predicts volume and % hardwood; second model predicts 
volume, %hardwood and growth; and the third model predicts volume, %hardwood, growth and 
mortality. These model errors are comparable to the estimation error reported by Holmstrom and 
Fransson (2003), Tomppo et.al. (2002) and Nellson (1997) for wood volume using kNN technique 
(RMSEs of 50 m3 ha-1, 46 m3 ha-1 and 56 m3ha-1 are reported respectively). 

 

Table 2. Error statistics of the random forest model predicting total volume and % hardwood 

 RMSE 
Without 
BAWHT 

RMSE 
With 
BAWHT 

R2  

Without  
BAWHT  

R2   
With 
BAWHT 

Volume (m3) 31.71 26.53 0.2444 0.4103 

% Hardwood 33.32 30.16 0.4673 0.5470 

 

Table 3. Error statistics of the random forest model predicting total volume, % hardwood and net 
growth of growing stock  

 RMSE 
Without 
BAWHT 

RMSE With 
BAWHT 

R2 
Without 
BAWHT  

R2 
With 
BAWHT  

Volume (m3) 32.36 27.38 0.2232 0.3855 

% Hardwood 34.43 31.05 0.4394 0.5233 

Growth (m3yr-1)  1.19  1.27 0.0573 0.0268 

 

Table 4. Error statistics of the random forest model predicting total volume, % hardwood, net 
growth and mortality of growing stock  

 RMSE 
Without 
BAWHT 

RMSE With 
BAWHT 

R2 
Without 
BAWHT  

R2 
With 
BAWHT  
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Volume (m3) 32.74 28.02 0.2091 0.3663 

% Hardwood 34.77 31.51 0.4289 0.5116 

Growth (m3yr-1) 1.17 1.26 0.0633 0.0279 

Mortality (m3yr-1)  0.68  0.75 0.0512 0.0159 

 

The four response variables (viz. volume, growth, mortality and removals) were imputed for each of the 
forty-seven counties selected in Michigan and were compared with the independent reference data 
obtained from FIA database using the EVALIDator tool. The validation statistics are given in the Table 5. 
The comparisons of imputation estimates of the parameter with the reference data set at the county level 
are presented separately in the scatter plots in Figures 6A-6D. 

Table 5.  Statistics of county level forest parameters comparison  

Parameter  R2  RMSE  Relative 
RMSE  

Bias  Relative 
Bias  

Total Growing Stock 
Volume (m3)  

0.8940  2686069.42 17.99% -365700.67 -2.45% 

Growth (m3yr-1)  0.7747  81248.23 30.40% -49669.62 -18.59% 

Mortality (m3yr-1)  0.7270  50834.26 42.70% -12394.02 -10.41% 

Removals (m3yr-1)  0.6843  1865.25 47.89% -787.93 -20.23% 
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Figure 6A. Scatter plot of county level imputed volumes (m3) against the reference volumes 
obtained from FIA database. 
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Figure 6B. Scatter plot of county level imputed growths (m3yr-1) against the reference growths 
obtained from FIA database. 
 

 
Figure 6C. Scatter plot of county level imputed mortalities (m3yr-1) against the reference 
mortalities obtained from FIA database. 
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Figure 6D. Scatter plot of county level imputed removals (m3yr-1) against the reference removals 
obtained from FIA database. 
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The validation of stand level volumes (m3) against the reference volumes obtained from the Capstone 
project has also shown encouraging results (see Figure 7 A), though substantial negative bias is obvious 
in the prediction (bias: -1083.43 m3; relative bias: -46.27%). However, we could not compare the imputed 
growth, mortality and removals at the stand level because of unavailability of such reference data (in the 
Capstone project). As expected, the plot level comparisons of imputed and measured forest parameters 
were worst (see Figures 7B) and the possible reasons are described in discussion section below.  

 

 
Figure 7A. Scatter plot of stand level imputed volumes (m3) against reference volumes from the 
Capstone project. 
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Figure 7 B. Comparison of plot level volumes (m3) estimated from the imputation technique and 
Capstone project inventory.  
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Discussion 
The results observed in the study are consistent with previous studies. Although we selected k=1 to retain 
the variability of field attributes in the imputation mapping, the pixel-plot level accuracy of estimates was 
least and county level estimates were the best. Other studies have also found that pixel level accuracy of 
forest attribute estimations using kNN is low, but for larger areas more acceptable accuracy is reached 
(Holmstrom, 2003; McRoberts et.al., 2007; Nilsson, 2002; Tomppo et.al., 2002). For example, Reese 
et.al., (2002) found that accuracy of the kNN estimates for all forest parameters was low at the pixel level 
(RMSE for total wood volume ranged from 58–80%), however, better accuracy was achieved over larger 
areas, with best results being 10% RMSE over a 100 ha aggregation.  

The weak association between pixel level measured and imputed values can also be justified on the basis 
of error in spatial referencing of pixels, error in GPS coordinates of inventory plots and also the design of 
inventory plots. For example, the layout of the FIA plots is such that the four 24-foot-radius subplots are 
spread over a minimum of 4 pixels (see Figure 3). The plot level per acre values for the attributes supplied 
by FIA (used in this study) is based on avenging and up-scaling of the values from the four sub-plots.  
Therefore, there is not a clear one-to-one relationship between spectral values of Landsat pixel and 
corresponding FIA plot data. Additionally, the year of FIA plot measurements did not exactly match the 
year of Landsat image acquisition. In fact, the best available Landsat scenes (used for developing NDVI 
mosaic), over the years 2006-2010, from the peak of growing season (June to September) were 
considered to avoid the nuisance of cloud cover. 

The county-level data for the four attributes (viz. volume, net growth, removal and mortality) retrieved 
(for validation purpose) directly from the FIA database using EVALIDator tool, were the estimates of 
growing-stock on forestland only that includes timberland, reserved forest land, and other forest land. The 
forestland according FIA definition is any land having at least 10 % crown cover. The FIA plots, 
according to current design, can also include areas having <10% crown cover (i.e. non-forest) and the 
imputation technique also considerers such plots and gives prediction for both forested and non-forested 
pixels. However, in a surprising way our results show that the total of the imputed values for most of the 
counties are below the reference values (obtained from EVALIDator) as shown by the distribution of 
points below the 1:1 line in the Figures 6 and 7. This means that the imputation models are under 
predicting the forest parameters. This is something that we are still working on by excluding non-forest 
lands and including more predictor layers in the ongoing imputation process. Use of mask to exclude non-
forest area and running imputation only for the forested region could possibly improve prediction and also 
reduce imputation time. This will be carried out in the upcoming version of Forest Biomass Information 
System (FBIS).  

Since the study required grouping of NDVI and land-cover rasters in broader classes because of the 
security issues of FIA, the predictive power of the auxiliary layers was obviously less than it would have 
been without the grouping. The inclusion of BAWHT though improved the prediction accuracy 
significantly, our team decided not to use this variable while mapping the forest parameters because the 
height data was available for fewer numbers of plots in the study area. Further, the BAWHT and elevation 
values attached to the available plots in the reference data matrix were not extracted from the raster layers 
(we supplied to FAI), rather these values were the results of field measurements made by FIA at the 
inventory plots. So there is likely inconsistency between the raster values and the plot-level values for 
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these two variables and hence also bias in the estimation. Our team has further contemplated to include a 
disturbance element as an additional predictor to better estimate the forest attributes, particularly net 
growth, in the final version of imputation mapping. We are going to use time-series NDVI imageries from 
MODIS sensor to develop a raster layer as a predictor of disturbance in the upcoming edition of FBIS. 

This research did not consider the differences in vegetation zones over the large study area. Operational 
application of the kNN method has also shown that the predictions may be biased if the area of interest is 
large and covers several vegetation zones with different tree species compositions (Tomppo, 2006). The 
biases can be reduced if the set of potential nearest neighbors can be restricted to strata by classifying the 
area into different vegetation zones. This is something to look at in future research.  
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